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Abstract. This paper deals with the problems of robust admissibility
and admissibilization for uncertain continuous descriptor systems. We
propose a new necessary and sufficient condition in term of a strict Linear
Matrix Inequality (LMI) for a nominal continuous descriptor system to
be admissible (stable, regular and impulse free). Based on this, the state
feedback admissibility problem is solved and the solution extended to
the case of uncertain descriptor systems. Finally numerical examples are
given to illustrate the results.
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1 Introduction

Intuitively, singular state space description of linear systems is more general than
conventional state space description. In particular, a descriptor form includes
information about static as well as dynamic constraints. Singular system, both
continuous and discrete, has been of interest in the literature since they have
many applications (see, [4]), for instance in electrical circuits network, robotic
and economics. It is fair to say that descriptor models give a more complete class
of dynamical models than the conventional state space systems.

Many classical concepts and results obtained for conventional systems have been
extended to descriptor systems. Let us quote for instance controllability and ob-
servability, pole assignment, stability analysis [8,6]) and stabilization techniques
as well as results including robustness aspects [9,7,13].

The natural Generalized Lyapunov Equation (GLE) [8] was proven in [6] to fail
unless the system is in its Weirstrass form and the authors of [6] proposed a new
GLE equivalent to that given in [11]. In [9], the authors modified the GLE given
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in [11] and proposed an equivalent matrix inequality condition.

In the available literature on descriptor systems, there are two kinds of stabiliza-
tion problems for singular continuous-time systems. One consists in designing a
state feedback controller in such a way that the closed-loop system is regular,
impulse-free and stable or equivalently admissible. The other is to design a state
feedback controller in order to make the closed-loop system regular and stable.
In many approaches, the system model is transformed into a special form and it
is understandable that this way of doing is not very appropriate in the presence
of uncertainty.

Concerning the stability analysis and the stabilization problem, a number of
approaches assuming or not the regularity of the descriptor system have been
proposed in the literature. Let us quote for instance [2,4,12] among those assum-
ing the regularity and [4,12] among those not assuming the regularity.

Robust control of linear state space systems has been the focus of much at-
tention during the past decades and various aspects and approach for analysis
and control design for linear uncertain systems have been investigated, see for
instance [15]. In the available literature we easily note that quadratic stability
and stabilization approaches have taken a lion’s share. The quadratic stability
or stabilization is characterized by a determination of a unique so-called Lya-
punov matrix which gives the approach an inherent conservatism. Many results
have been reported in quadratic stability analysis and/or stabilization (see for
instance [1,15,14] and the reference therein).

Recently the Parameter Dependent Lyapunov (PDL) approach has been intro-
duced to reduce the conservatism of the quadratic approach. The PDL approach
consists in expressing the Lyapunov matrix as a function of the uncertainty and
with the help of some slack additional variables the approach yields a significant
reduction of conservatism [5,3].

In this paper, a Linear Matrix Inequality (LMI) formulation is adopted to ex-
press necessary and/or sufficient conditions for the admissibility of continuous
time descriptor systems. The proposed approach can be understood as the LMI-
correspondant formulation of the GLE proposed in [6]. It is known that strict
inequality conditions are tractable and reliable especially with the available LMI
software solver.

The state feedback stabilization problem is solved by means of the admissibility
of the closed loop. When the system contains uncertainties, the present method
is extended to solve the robust state feedback admissibility problem particularly
through a PDL approach.

This paper is organized as follows. Section 2 gives the problem formulation and
some preliminary definitions. Section 3 gives the result on admissibility for con-
tinuous time descriptor systems. In section 4, main result to solve the static
feedback problem for the nominal descriptor systems is given, whereas Section 5
presents the result for uncertain singular systems. Section 6 presents illustrative
examples. Section 7 concludes the paper.
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2 Problem formulation

Consider the following continuous time descriptor system

Ei(t) = Az(t) + Bu(t) (1)

where z(t) € R™ is the state, u(t) € R™ is the control input. The matrix E may
be singular, we shall assume that rank(E) = r < n. A and B are known real
constant matrices with appropriate dimensions.

Definition 1. [/]

1. The pair (E, A) is said to be regular if det(sE — A) is not identically zero.
2. The pair (E,A) is said to be impulse free if deg(det(sE — A)) = rank(E).

In the rest of the paper the notation is standard unless it is otherwise speci-
fied. L > 0 (L < 0) means that the matrix L is a symmetric and positive definite
matrix (a symmetric and negative definite). In the sequel, Sym {-} is defined as
Sym{X} = (X + X7) for any matrix X.

It is worth noting that the stability property for conventional systems is no
more sufficient for singular systems but completed by the regularity and the
absence of impulses and this lead us to introduce the notion of admissibility.

Definition 2. [4] [7]
The continuous time singular system (1) is said to be admissible if it is reqular,
impulse free and stable.

In order to characterize the admissibility of a singular system let us recall
that for a pair (E, A) there exists a transformation couple (U, V) such as

oo o I 0 1 o All 12112
E—UEV—{O 0}7 A—UAV—{[121 Ao |-
It comes then that the singular system is said to be admissible if

matrix Ass is non singular (2)

and there exits a symmetric and positive definite matrix X;; such that

Sym {((AU — A12A521A21)X11)} < 0. (3)

Indeed, condition (2) means that the considered system is regular and impulse
free whereas condition (3) states that matrix (A;; —A12A521 Agy) is stable. Notice
that conditions (3-2) are not tractable for uncertain systems and it is preferable
to use directly the system matrices. Both conditions will be combined in a unique
condition as in [6]. The associated Lyapunov matrix will be neither symmetric
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nor positive definite. The positivity will be required only on a fraction of the
Lyapunov matrix in order to satisfy condition (3).

To solve the admissibility problem, we propose a Lyaponuv-type admissibility
condition, which is expressed by a strict LMI as given in Theorem 1. The goal of
this paper is to find a static state feedback controller u(t) = Kx(t) such that the
closed loop system (E, A + BK) is admissible. This is defined, in this paper, as
the static feedback admissibility problem of descriptor systems. The solvability of
the above problems will be characterized by some LMI conditions. If the derived
LMI conditions are feasible, the feedback gain matrix can be obtained. If the
system contains polytopic uncertainties, the results can be modified to find the
static state feedback gain in such a way that the closed loop uncertain system
is admissible.

3 Admissibility analysis

Consider the singular system described by the pair (E, A) and define E+ and
ET as follows

E+=V(I-UEV)U, Et=U"(I-UEV)U™ T, (4)

with U and V, two non singular matrices satisfying

I 0
vev-[1 0]

Theorem 1. The continuous time singular system (E, A) is admissible if and
only if there exist some matrices X = X', Y and G such that condition

0 (XET+ELYE!) '

(XET + ELYEY) 0 ] +Sym { {AI] G[UTVT]} <0 (5)

is feasible.

Proof of Theorem 1 :
By virtue of [10, Theorem 2.3.12] condition (5) is equivalent to

0 (XET + BLYEN ][ 1
4] [(XET + ELYEY) 0 } [AT}
=Sym{AXE" + AE*YE'} <0 (6)
et 0 (XET +B+yEN ][ UT
vl {(XET+ELYET) 0 ] [VT}

=-Sym{XE'+E'YE'} <0 (7)
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with
X=v1ixv-T,
Y =UYU',
E=UEV,
Et =V lEtU ' =1-UEYV,
E'=U"TE'U" =1 -UEV.
Note that condition (7) implies that the 11-block of X is positive definite.
First we will show that matrix A is non singular or in other words the

considered system is regular and impulse free. For this, multiplying both sides
of (6) by U and U respectively, we get

Sym{UAXE'U"} + Sym{UAE*YE'U"}
— Sym {AXET} + Sym {AE-V B}
“omilz o} rom s ) <
which shows that we have necessarily
Sym {1‘_1225722} <0
and this means that Ao is invertible or in other words that the system is regular

and impulse free. Note that the stars here corresponds to terms with no much
relevance at this step.

To prove the stability of the singular system, we consider the two matrices

B I 0 [T —ApAL
2[/1521/121 AQJ and F[o I

that transform the matrix A in a diagonal form as

1 T o ;_111 0
i ras-[An 0

with

7111 = Ay — A12A2_21A21~
If we multiply both sides of (6) by I'U and its transpose we get
== =T ==l== _ ‘leXll 0 00
Sym {AXE }+sym {AE VE }_sym {[ : 0“+sym { [* *H<o

with
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E=TEY =E,

POEDES L BT
* x|

=L Apl -1 Bl

E =y lgir-t=pg+

Y =IYr".

Then, it comes that we have

Sym {ZHXH} <0 (8)

which means that the singular system is stable since matrix X is symmetric
and positive definite according to condition (7) and this ends the proof of the
theorem. \YAYAYS

4 Admissibilization by state feedback

In this section we address the problem of admissibilisation by state feedback for
the singular system given by

Ei(t) = Az(t) + Bu(t) (1)

where z(t) € R™ is the state, u(t) € R™ is the control input.
The control law given by a state feedback is then

u(t) = Ka(t) (9)

where the gain K, of appropriate dimension is computed in such a way that the
singular closed loop system is admissible.

Theorem 2. The continuous singular system is admissibilizable if and only if

the LMI problem

T Ayt T
0 (XET+E'YEY) } +Sym {{ACH—BR

(XET+EYE?) 0 G ][U‘TVT]}<0 (10)

1s feasible in the variables X, Y, R and G. Moreover, the state feedback is
given by

K = RG™". (11)
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Proof of Theorem 2
The closed loop singular system is admissible if and only if there exist two
matrices X and Y and a state feedback K such that

T

and it becomes clear that a change of variable R = K G yields condition (10).
This ends the proof by virtue of Theorem 1. \YAVAYS
From Theorem 2 we can easily be aware that this approach has the advantage

to be nicely applicable in the case the system is uncertain with a polytopic
description of uncertainty which is the subject of the next section.

5 Robust Admissibilisation

In this section, we consider the feedback admissibilization problem for systems
containing uncertainties. The descriptor system is characterized by the pair
(E, A(a), B(@)) where matrices A(&@) and B(a@) belong to a polytope, that is

p

[A(a) B(a)] =) ai[4; Bi]
i=1
with
a/L Z 07 1= ) 7 p,
P
a; =1 and a=[o ap ]
=1

The problem for a system corrupted by uncertainty is to preserve its perfor-
mances for all admissible uncertainties or in other terms for every instance of
matrices A(a) and B(@).

Definition 3. The uncertain singular system is robustly admissible if and only
if it is admissible for every instance of the uncertainty a.

Precisely, the continuous singular system will be robustly admissible if the
22-block of UA(&)V is invertible and all the finite poles are located in the open
left half plane, that is, there exists a symmetric positive definite matrix X (a)
such that

Sym {((A11(@) — A12(a) Agy (@) A21(@)) X11)(@) } < 0.

In this case, the continuous singular system will be termed as robustly admissible.

Unfortunately, solving the previous equation is out of reach for the time
being and instead one can thought of matrix X;;)(@) as a unique matrix over
the uncertainty set, that is condition

Sym {((A11(a) — Apa(a)Az) (@) Agy (@) X11)} <0
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holds with of course the invertibility of matrix A,y then in this case the contin-
uous singular system will be termed as quadratically admissible.

It is worth noting that quadratic admissibility implies robust admissibility
but the converse is, in general, false. If quadratic admissibility is only sufficient
for robust admissibility, it matters to find (sufficient) conditions for robust admis-
sibility that are less conservative than quadratic admissibility. In other words, it
is important to derive conditions implicitly involving matrices X and Y that are
not constant but dependent on the uncertainty. One possibility is that matrices
X and Y comply with

[X Y]:Zai[Xi Yil, (13)
i—1

where X; and Y; are valid to assess the admissibility of extreme models.
Based upon these notions, the next theorem is proposed:

Theorem 3. The uncertain closed loop singular system is robustly admissible if
there exist matrices X;, Y;, fori =1, ..., p, and two matrices G and R such
as the LMI problem

-
B S G T R
is feasible. The admissible feedback gain is then given by
K =RG™.
Proof of Theorem 3 :
Let matrices X and Y be defined as in (13), then multiplying conditions

(14) by «; and summing up from 1 to p one gets the same conditions as in
Theorem 2. \YAVAY

6 Illustrative example

Ezample 1. Consider a continuous time descriptor system as in (1) described by
the parameters :

1 0 1 0 1 2 0.0 0.2
E=| 11 2|, A=|-14 4|, B=|[10 02].
-1 10 -1 20 0.9 08

The finite poles are located at 0.3820 and 2.6180 which implies that the open
loop is not admissible.
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Taking
1 0 0 1 0 —1
U=1|-1 1 0 and V=0 1 -1
2 -1 1 0 0 1
and applying Theorem 1 we obtain :
[ —1.3116 —1.2550 1.3530 | 0.6075 2.5598 1.4604
X=1|-1.2550 —1.1265 1.2720 | x10*, Y=| —0.3609 1.5548 0.6442 | x10%,
| 1.3530 1.2720 —1.3670 | 1.4604 0.6442 —3.1074
[ —3.8214  7.6429 —3.8498 ]
G| Tao00 sy 42000 e, = | L3 0328 20038
3.8544 —4.2934  0.0071 | ' ' '

and the state feedback gain :

2.5061 —2.6310 1.0596]

_ -1 _
K=RG = —1.9832 —2.2806 —6.8965

which renders the resulting closed loop system admissible with the finite
closed loop poles located at —0.9965 and —0.2841 and the 22-block of UAV

equaling —2.7512.
Example 2. Consider the uncertain singular system defined by

1 0 1
L= 1 1 2
-1 1 0

with matrices A and B belonging to a polytope whose vertices are given by

1 -1 0 | —1.0000 0.0680 —0.8158
[4; Ax]=1[3 0 4 | —0.2500 0.6842 2.9136 |,
1 4 6 1.7500 0.5482  4.5452

2.0000 0.0800 2.2162 | —2.0000 0.0672 —1.8166
[A5 A4 = 2.8900 0.7562 6.3456 | —1.4500 0.6834  1.4728
—1.1100 0.5962 1.9132 2.5500 0.5490  5.1060

The input matrices

0.0122 0.0422 | 0.0122 0.0402 {0.0122 0.0422 | 0.0122 0.0402
[ B1 By Bs B4 ]=0.3590 0.1652 | 0.3750 0.1632{0.3990 0.1652 | 0.3350 0.1632
0.5291 0.2949 | 0.5591 0.3289 | 0.5971 0.3349 | 0.4911 0.2889



238  Chaabane M., Bachelier O., Ramirez-Mendoza R. and Mehdi D.

Fig. 1. Finite eigenvalues location of the uncertain closed loop system over the consid-
ered polytope

According to Theorem 3, the robust state feedback gain

K- 39.4509 —16.8080  16.9447
~ | —75.3237  15.2275 —59.6286

will renders the uncertain closed loop system robustly admissible.

7 Conclusion

The problem of admissibility and admissibilization for continuous time descrip-
tor systems have been studied. In terms of a strict LMI, a necessary and sufficient
condition for continuous descriptor systems to be admissible has been proposed.
This condition is an LMI twin formulation of the well known improved general-
ized Lyapunov equation. LMI conditions are obtained to ensure the admissibility
of the closed loop via a state feedback control law. A robust admissible state
feedback control law is proposed for polytopic uncertain continuous descriptor
systems. Numerical examples are given to illustrate the usefulness of the pro-
posed methods.
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